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Abstract. A perturbation-iteration scheme is employed to generate central potentials in 
an effort to reproduce the elastic scattering phase shifts for a few standard central potential 
models such as the square well, the perturbed Gaussian and the Woods-Saxon. A com- 
parison is made with earlier work in which the Newton-Sabatier method was used. 

1. Introduction 

Recently a number of proposals have come forward aimed at providing straightforward, 
practical procedures for the solution of the fixed-energy quantum-mechanical inverse 
scattering problem. It has been demonstrated that, if the interaction potential falls off 
faster than r-3'2 for increasing r, then a knowledge of all the phase shifts at a particular 
energy is sufficient to construct a unique scattering potential. Unfortunately in practice, 
one has only a limited knowledge of these phase shifts, and hence there are insufficient 
data to generate a unique potential. One is also plagued by the difficulty of numerically 
implementing the inversion procedure, such as that of Newton and Sabatier, with 
sufficient accuracy to obtain a unique potential. 

In particular, three approaches have recently been applied to generate either real 
or optical model local potentials starting from a limited knowledge of the scattering 
phase shifts at fixed energy. Deo et al (1984) have improved on the now familiar 
Newton-Sabatier method by determining the necessary coefficients using a smaller 
number of phase shifts than in the original procedure. Kermode et a1 (1986) utilise a 
polynomial' representation for the wavefunction in each partial wave, together with a 
variational approach, to generate the potentials. Finally, Ioannides and MacKintosh 
(1985) have carried out calculations using a perturbative iterative technique, as pro- 
posed by MacKintosh and Kobos (1979), to generate optical model potentials using 
phase shifts computed from known potentials. They have found that the procedure 
works very well at high energies with light projectiles. 

Our objective in this brief study is to conduct a second test of the applicability of 
the iterative scheme proposed by Ioannides and MacKintosh (1985) to invert a limited 
set of phase shift data. We have assumed a local central field potential, describing the 
scattering of a neutron off an alpha particle at various energies. The iterative method 
is considerably simpler in implementation than the use of Fredholm determinants to 
solve the equations which arise in the Newton-Sabatier approach. The latter scheme 
was the focus of a study by Coudray (1977) to determine the ability of that approach 
to reproduce local potentials from which the input phase shifts were computed. 
Coudray observed that the inversion calculation worked well at high energies, but 
produced oscillating potentials at low energies. 
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In implementing the iterative approach we have modified the procedure slightly 
by choosing different basis functions for the expansion, and by utilising a procedure 
which rapidly computes very accurate wavefunctions and phase shifts. This, we believe, 
leads to more reliable results. 

2. Background 

The perturbative iterative scheme is based on the evaluation of the difference between 
the phase shifts computed from two slightly different potentials. For example, from 
the work of Sugar and Blankenbecler (1964), if w and KJ are the radial wavefunctions 
associated with potentials U and fi respectively, then the phase shifts 6/ and & are 
related through 

- (2 1,1 sin(SI-S,)=- - KJ(u-fi)wdr. 

If the potentials U and B depend on parameters A and i with 11 - AI very small, i.e. 

v = v(A, r )  B = u ( i ,  r )  ( 2 )  

then 

a v  dsl = - (g) lom[ w ( A  ) 1’ - d r. 
dA ah (3) 

Alternatively, by choosing two potentials u0 and uI which are very close to each other, 
and by defining 

u ( A  ) = 00 + A (01 - uO) (4) 

with U, u0, the phase shifts for u0 and U, are related through 

The difference between the solutions w and KJ may be neglected in the integral. The 
effective result of this is that the partial-wave phase shift is linearly dependent on small 
corrections to the interaction potential. The iteration procedure is initiated by choosing 
a reference potential V o ( r )  and computing the associated phase shifts 6:. A set of 
basis functions q ( r )  are then chosen, and for each modified potential V o ( r ) + v j ( r ) ,  
the corresponding set of phase shifts S; are also computed. A best set of inversion 
amplitudes A i  are then obtained by inverting the linear set of equations 

61 = 6: + c A i (  6 I - 6:). (6) 

The number of active partial waves, N I ,  is chosen to be larger than the number of 
basis functions, Nb, so that the least-squares inversion procedure of Dalquist and 
Bjorck (1974) can be utilised. 

Once a set of A i  have been generated a new reference potential is computed: 
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The process is then repeated until there is convergence, such that the generated phase 
shifts match the input set as closely as possible. As a measure of the fit we have chosen 
to compute 

NI 

= ( 16, - 6712) 
i=o  

This iterative process requires accurate calculations of the phase shifts at each 
stage. In order to be able to provide this accuracy, we have chosen to employ the 
method of analytic continuation as introduced recently by Holubec and Stauffer (1985). 
In this approach the radial scattering equation is written 

z2u"+ Q ( z ) u  = 0 (9) 

Q ( Z )  = --Z(/+ 1) + k2z2  - z2 V ( Z ) .  

where 

(10) 

The method is based on expanding Q ( z )  in a Taylor series: 

Q ( z ) = C  Q z ' = C  C j i ( Z - - Z J i .  

The coefficients Q, and dl are determined explicitly for each potential V ( z ) ,  and the 
wavefunction U is obtained by analytically continuing a Frobenius series. The 
expansion about the origin (for the regular solution) is given by 

u , ( z )  = 1 u,zl+r with r = I +  1 (12) 

u , ( z ) = C  c,(z-zo) ' .  (13) 

whereas the expansion about zo is given by 

The coefficients a, and c, are expressed in terms of the Ql and GI, so that no 
numerical integration procedures are employed. The wavefunction is generated by 
starting at the origin and then stepping out to larger r values, changing the value of 
zo as one progresses. This procedure is able to generate very accurate wavefunctions 
and hence accurate phase shifts. 

In view of this choice of procedure to compute the phase shifts, we have chosen 
to use modified Laguerre polynomials 4,,( z )  as our basis functions instead of the spline 
functions employed by Ioannides and MacKintosh: 

(14) 4,, ( z )  = e-'"L,, ( z )  

where the Laguerre polynomials L, ( z )  are polynomials of order n. Thus we can readily 
obtain the coefficients for a power series expansion of 4 , ( z )  and hence use these in 
our computation of the phase shifts for the sum of the reference potential plus basis 
functions. 

3. Results 

We have applied the foregoing inversion process to some of the same potentials and 
scattering energies considered by Coudray (1977). These include the square well, the 
Gaussian, a perturbed Gaussian and the Woods-Saxon potentials. The problem treated 
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is that of a neutron scattering off an alpha particle. The procedure is initiated in each 
case by computing the phase shifts for the potential model chosen. These are referred 
to as the goal phase shifts SF, associated with the goal potential. A reference potential, 
V,, is then chosen with parameters such that it produces phase shifts which are similar 
to those of the goal potential. In all the cases studied here, we have selected a Gaussian 
as the reference potential. The iteration process is then carried out, with the value of 
c computed at the end of each stage. We found that the process converged very 
quickly, with only two or three iterations necessary before U stabilised. 

The results for the square well potential at a laboratory energy of 50 MeV are shown 
in figure 1, where the comparison is made with results obtained using the Newton- 
Sabatier approach. The well has a depth of 14MeV and a radius of 5.0fm. The 
oscillations found in our case are much deeper than those found by Coudray (1977). 
The phase shifts for this potential form, however, are still in very good agreement with 
the square well phase shifts, such that they are not distinguishable on a graph. Instead 
we have plotted the difference between the goal phase shifts (Sp )  and the computed 
phase shifts (8,) in figure 2 .  

€ = S O  MeV 

0 4.0 8.0 
Radius i f m )  

Figure 1. Generated potentials for the square well at 50 MeV. Our results (full  curve) and 
those of Coudray (chain curve). 

Increasing the energy to 400 MeV with the same square well as the goal potential, 
we find that the generated potential is quite different from that at 50 MeV. The small 
oscillations about the goal potential are not obtained in our case. Instead, a largely 
fluctuating, relatively smooth form is found. These results are shown in figure 3. The 
agreement of the phase shifts here is not as good as it is at 50 MeV, but it nevertheless 
is satisfactory. 

The perturbed Gaussian potential 

~ ( r )  = - v o e x ~ [ - ( r / p ) 2 1 -  VI exp{-[(r-ro)/v12) (15) 

with Vo = 14 MeV, V, = 2 MeV, p = 3.5 fm, v = 0.4 fm and ro = 5 fm was run at 30 MeV 
and 400 MeV. An extremely good match to the phase shifts was obtained at 30 MeV. 
As can be seen from figure 4, the generated potential does not reproduce the dip found 
in the goal potential, and also has large deviations in the region less than 3 fm. The 
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Figure 2. Difference between the goal and computed phase shifts for the square well 
potential at E = 50 MeV. 
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Figure 3. Same as for figure 1, at E = 400 MeV. 

potential obtained at 400 MeV is similar, but deviates more in the rising part of the 
potential curve. In both cases V is relatively smooth. 

The final case examined in this study was the Woods-Saxon potential at 150 MeV. 
The generated potential and the phase shift errors are shown in figure 5 and figure 6 
respectively. The fit to the goal phase shift is quite good, and the potential deviates 
only slightly from the goal potential. 

The procedure for the inversion is quite simple and the process converges quickly. 
Naturally, in this type of approach one can use different reference potentials Vo(r)  
and generate quite different final potentials in the process, all of which reproduce the 
initial phase shift data quite well. Working with only a finite number of phase shifts 
does not enable one to derive a unique potential. There is also the question of error 
in the phase shifts themselves. This has not been taken into account in our analysis. 
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Figure 4. Original (dotted curve) and generated (full  curve) potentials for the perturbed 
Gaussian at E = 30 MeV. 
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Figure 5. Original (dotted curve) and generated (full curve) potential for the Woods-Saxon 
potential at 150 MeV. 

4. Conclusions 

We have carried out an evaluation of the perturbative iterative scheme for generating 
phase equivalent potentials, as introduced by Ioannides and MacKintosh. The pro- 
cedure has been applied to real potentials, using a very accurate method for computing 
the phase shifts, and employing modified Laguerre polynomials as basis functions in 
the iteration. The potentials generated are quite different from those obtained by 
Coudray (1977), using Fredholm determinants based on the Newton-Sabatier 
equations. Our results display much larger variations from the goal potential in the 
case of the square well, but are free of the oscillating behaviour for the smoother 
potentials. For smooth potentials such as the Gaussian or the Woods-Saxon, reproduc- 
tion of the phase shifts and the potential form is quite good even at low energies, 
where the determinantal approach of Coudray resulted in considerable oscillation. 
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Figure 6. Difference between the goal and computed phase shifts for the Woods-Saxon 
potential at 150 MeV. 

This technique includes a method for generating smooth potentials based on an 
expansion in terms of associated Laguerre polynomials, from which phase shifts can 
be computed without numerical integration. This enables one to adjust the coefficients 
in the potential expansion to fit a particular form, and compute the associated phase 
shifts, or alternatively, adjust the expansion coefficients to reproduce a given set of 
phase shift data as well as possible. We are currently proceeding with calculations 
along these lines. 
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